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In the statistical theory of damage, the following functional equation plays a role: 

,4x> = j-K(x, Y&W + P(X - Y - 01 4, x > 0, (1) 
0 

where the kernel K is a positive and twice continuously differentiable function for 
0 < y < x with the property that 

s 

z 
K(x, y) dy = 1, x > 0. 

0 
(2) 

The unknown function satisfies the following initial conditions: 

Ax) = 0, x < 0, 

A.4 = 1, O<x<l. 

This functional equation gives rise to many analytical solutions using Tauberian 
theorems. 

In addition to these solutions, we intend to show the numerical aspect of the problem. 
We will study the boundary and the asymptotic behavior of p(x) for a given class of 
kernels 

lim p(x) = A(1 + x) + O(l), 
Z-KV 

as well as the approximation of p(x) for small values of x using cubic cardinal spline 
functions. 

Numerical examples are given to illustrate the method and to define the shape of the 
distribution of damage for special cross-sections. 

INTRODUCTION 

Starting with the work undertaken by Snyder and Neufeld, Seitz, Kinchin and 
Pease, Lindhard, and Robinson [35], one can elaborate the calculation of the 

70 
Copyright Q 1973 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



VOLTERRA'S FUNCTIONAL INTEGRAL EQUATIONS 71 

number of atoms displaced in a solid subjected to neutron irradiation. The simplest 
model to describe an elastic collision between atoms is that of free isotropic 
diffusion. When an atom undergoes a series of elastic shocks, a model such as this 
enables us to simulate the loss of energy of a primary atom by a well known 
stochastic process [14], since the problem is reducible to a Markoff chain with a 
continuous space state whose recurrency relation is easily integrated. 

Unfortunately this model only partially expresses the experimental results 
obtained for solids. Hence, the modification brought about in the formulation of 
the problem by the addition of the hypothesis that atoms diffused by a primary 
atom are linked in a lattice is studied. Moreover, since these atomic collisions are 
anisotropic, the form of the cross-section for the transfer of energy must be 
improved upon for the calculation of the number of displacements created by a 
primary [24, 251. 

1. MODEL FOR AN ATOMIC CASCADE INDUCED BY 
FAST NEUTRONS IN A SOLID 

A fast neutron of energy En scatters elastically on an atom in the lattice. During 
the collision it transmits an energy E,,, between 0 and (4mM/(m + il4)3 E, with 
probability P(E,), obtained with the help of the cross-section of elastic diffusion 
(m: neutron mass, M: mass of the atom of the solid). The atom thus displaced 
loses its energy in different ways [14]; when the atom’s energy is larger than E, 
(Ionization energy threshold), the energy is lost through ionization and excitation. 
When the energy is less than E,, , the energy is lost principally through atomic 
shock with other atoms of the lattice, who, in their turn, displace others. An 
atomic cascade, thus, results. 

The displacement of the atoms creates a series of pairs of atom vacancies and 
interstitial atoms. To evaluate the number of defects thus created, we must know 
the number of displaced atoms per primary atom. 

There is a delicate problem in evaluating the energy threshold E,, and the 
displacement (or binding) energy Ed . Fein [l l] weights Ed with a probability. The 
statistical fluctuations in the number of displacements created by a primary are 
negligible as Pal and Nemeth [21] have shown in their hard sphere hypotheses. 
Gaussian representation of the distribution of the number of displacements ZV(p, ~2) 
is probably sufficient; however, we propose to calculate the cumulants of this 
distribution, because for collision other than those of hard spheres the contribution 
of cumulants of an order larger than two can become relatively important. All 
effects of channeling and focusing have been eliminated. 
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2. STUDY OF THE INTEGRAL EQUATION OF THE STATISTICAL THEORY OF DAMAGE 

a. General Characteristics 

By a Volterra equation [19, 31, 321 the calculation of ,u(x), the average number 
of displacements created by a primary of energy E in a solid, is carried out. For 
each displacement the energy Ed is lost by the secondary in order to free itself from 
the binding energy which hold it in its potential well. 

Let pm(x) be the probability for a primary of energy x displacing m atoms, where 
x = E/E, . Assuming p,(x) = 0 for x < 0, this gives 

Pm(X) = jzy, w, Y>Pm(Y) dY + f j”-‘m Y)P?J-dY)Pr& - Y - 1) dY* 
nz’=O 0 

Assume that g(x, t) is the generating function 

Ax, 0 = f @%&Q. 
m=o 

Thus, 

(2.1) 

(2.2) 

g(x, t> = jzyl K(x, Y> g(y, t> dY + 6-l w, Y) g(Y, t) dx - Y - 1, t) do. (2.3) 

The kernel K(x, v) of this integral equation represents the normalized cross- 
section of atomic collision, 

Hx, Y> = 4x3 Y) 
J,z 46 Y> dY ’ 

s 
’ K(x, y) dy = 1 K(x, Y) 2 0, O<Y<& 

0 

0, elsewhere. (2.4) = 

The initial conditions imposed on g(x, t) are 

g(x, 0) = 1, x z 0, 
dx, t> = 0, x < 0, 
&, t> = et, o,(x<l, 

sincep,(x) = a,,, and pm(x) = 0 for x < 0, (6,,+ Kronecker symbol). 
In the absence of these conditions we know that the functional equation 

(2.5) 

f(x) = f(Y>f(X - Y - 0, (2.6) 

wheref(0) = ec and c is a constant, admits the unique solution: f(x) = ec(r+l). 
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PROPOSITION I. The integral equation (2.3), where K(x, y) is a frequency function 
defined in (2.4), and the initial conditions are defined in (2.5), admits one and only one 
solution. 

Proof. Supposen <x<n+l,n= I,2 ,.... Then we rewrite the equation as 
follows: 

dx, t> = I-’ K(x> Y> 0, t> dx - Y - 1, t> 4 + jn W, Y> g(y, t) 4 
X-l 

+ j4 Ktx, Y> gty, t> 4. 
n (2.7) 

This is a linear Volterra integral equation of the form 

&, 0 = gnb, t) + jz K(x, Y) g(x t> d., n<x<n+l, (24 
n 

for which it is well known that it has a unique solution if g,(x, t) is known. 
Now, gl(x, t) is known, hence g(x, t) can be determined for 1 < x < 2 by the 

integral equation for n = 1. Then we can determine gz(x, t) and g(x, t), for 
2 < x < 3, and so on. 

PROPOSITION II. pm(x) generating function is bounded; 

et < g(x, t) < et(l+“), x > 0. (2.9) 

Proof. Using the Picard’s method of successive approximation, we may deduce 
the proof of consistency between the mathematical model and the physical rule of 
energy conservation. Let 

F,(x) < et(l+@) for n<x<n+l, n = 1, 2,..., 

~rn,l(X) < j”-’ Ktx> Y> dy, t) & - Y - 1, t> dv + j” Ktx, Y> dx t> dy 
0 X-l 

+ 1: K(x, y) et(l+y) dy, 
(2.10) 

g(x, t) < et(l+“), since g(x, t) = et for O<x<l. 

However, if F,(x) > et for n < x < n + 1, n = 1,2 ,..., 

Fm+dx) 2 s"' KG, Y> Ax t> dx - Y - 1, t> dy + j” K(x, Y> gty, t) dv 
0 X-l 

+ js K(x, y) et dy. (2.11) 
n 
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Therefore, g(x, t) >, et since g(x, t) = et for 0 < x < 1. It may be easily deduced 
that 

1 </A,(x) = 8m;E t, ( 1 < (1 + x)“, x > 0, (2.12) 
t=o 

where the pm(x) are the pm(x) moments, and particularly the average number of 
displacements, 

1 <p(x) d 1 +x for x > 0, (2.13) 

CL(x) = IO% m9 rMu> + p(x - y - I)] dy. (2.14) 

Palasti [22] uses a theorem of Hyers [13] when studying a problem of random 
filling of a car-park. This problem, introduced by Renyi [23], is analogous to the 
problem of atomic or electronic cascades, as noted by Ney [20] and 
Van Roosbroeck [24] (when studying the Fano factor). 

Hyers’ theorem concerns the stability of a functional linear equation; the 
transformationf of the Banach space E into the Banach space E’ is called a 6 linear 
transformation if it satisfies the following inequality: 

II f(x + u) -f(x) - f(Y)lk G 6 (2.15) 

for all x, y E E. For every 6 linear transformation of E into E’ there is one and only 
one linear transformation I, which satisfies 

llf(4 - WllE~ < 6. (2.16) 

If E and E’ represent both the set of real numbers, and iffis a function, I must be 
a linear function. It is, therefore, interesting to know for which K(x, v) class the 
following conjecture is verified, taking the norm 

sup I Ax) - CL(Y) - /-G - y - 111 
O<Y<X 

II PC4 -p(y) - ,4x - y - l>ll < 1, 
(2.17) 

O<Y<X, 

we have 

P>$ I P(X) - 41 + 41 G 1, (2.18) 

which implies 

lim &) A ,,ml+x = ’ (2.19) 

where A is a constant E (0, 1). 
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The equation (2.14) may be resolved by the iterated kernels method as Corciovei 
and others [7,33] have noted. 

PROPOSITION III. If 

cc(x) = 0, x < 0, 

p(x) = 1, O<x<l, 

and K(x, y) E C” (0 < y < x < CD), n = 0, I,2 ,... we have p(x) E Cm[m, co), 
m = 0, 1, 2 )..., n + 1. 

Proof. p(x) will be continuous in all the intervals (n, 12 + l), n = 1,2,... . 
Continuity is assured at the boundary of these intervals, and p(x) E CIO, co) 

4(x) continuous; 4(x) = 0, x < 1, 
S(x): Dirac “function.” 

(2.20) 

Differentiating (2.14) with respect to x, we get 

P’(X) = K(x, 4 p(x) + joz K(x, y) p’(x - y - 1) dy + j-o’ @$$ 

- i/h) + P”(X - Y - l)] dy, x > 1. (2.21) 

If K(x, u) E c (0 < y < x < co) 

p’(x) will be continuous except where x = 1, 
$(l-) = 0, 

liip’(x) = ‘;ti 1 K(x, x - 1)1 = K(l, 0). 

Thus, /A(X) E C1[l, co). 
By successive differentiations P(~)(X) adopts the form due to the Leibnitz rule for 

x > n, then it will be easily proved by induction that 

p(x) E Crnh a>, m = 0, I,..., n + 1, 
if 

K(x, y) E C” (0 < y < x < co), n = 0, 1, 2 )... . (2.22) 

Much stricter boundaries may be found for p(x) for a more reduced K(x, JJ) 
class using for the proof an analogy with the Gronwall’s lemma. 
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PROPOSITION IV. rf K is a Goursat kernel of rank 1: 

(2.23) 

p(x) follows the Hiilder continuity for x > 1. 

Proof. Let 

&(x) < p(n) + x - n for n<x<n+l, n = 1, 2,..., 

&+I(x) G IOn K(x, YMY) + CL@ - Y - 01 & + j’ KG, y>b-&> + Y - 4 4 n 
< cc(n) + x - n, (2.24) 

since ~(x - y - 1) - p(n - y - 1) < x - n and 

d-4 1” n(y)[tl(n - Y - 1) + P(Y) - &)I 4 = 0. 
Let 0 

Gdx) 3 An> for n<x<n+l, n = 1, 2,..., 

Fm+dx) b IOn KG, YG~Y) + CL@ - Y - 01 dv + 1’ K(x, y)pFn) 4 (2.25) n 
3 An), 

since p(x - y - 1) - p(n - y - 1) > 0. Therefore, 

0 < p.(x) - p(n) < x - n for n<x<n+l, n > 0. (2.26) 

The Hijlder continuity is, thus, assured. 

Note. For a Goursat kernel, due to the iterated kernels method, we easily obtain 

/-4x) = N4 + 1% Nx, Y> NY) dy, 
0 

where R(x, y) = n(y) * g(y) and 

h(x) = joz K(x, x - z) p(z - 1) dz. 

After differentiation with respect to x of (2.14) we get, x > 1 

$6) = jo’ K(x, x - 4 ~‘(2 - 1) dz + M9, 

(2.27) 

(2.28) 
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where 

41(x> = IcS MY) + /-4x - Y - l))W(x, Y) ax, 4 + W& YYdx) dY, 
(2.29) 

W> = 0 if K(x, v> is a Goursat kernel (a condition). 

We can differentiate (2.14) once more. The integral equation is transformed into 
a differential-difference equation [2], for x > 2 

P”W + K(x, w’tx> - P’(X - 1)) = Al’ + m 0) m) + $Mx>, 
(2.30) 

where 

b(X) = lo’ $(Z - 1) [ K(x, 0) K(x, x - z) + dK’“z - “‘1 dz, (2.31) 

ddx) = 0 if K(x, x - z) = s(z) t(x), O<z<x<oo. (2.32) 
(B condition) 

PROPOSITION V. If K(x, y) is a degenerated kernel satisfying the (II and /3 
conditions and 

Ktx, 4 = oy, Ktx> Y) < ~0, 

K(x, 0) = inf K(x, y) > 0, 
OQ6.X 

lim I 
x-rm 1 +x exists. 

Proof. Some conditions are analogous to those of the Ney’s theorem [20], but 
the essential difference consists in the fact that Ney imposes symmetry for the 
kernel K(x, y), when a cross-section of atomic collision is monotonically decreasing. 

To demonstrate the existence of the lim,,, p’(x) = A a De Bruijn theorem 
[8,9] will be used, whose hypotheses are reproduced below. A completion of this 
theorem has just been given by Brands [3]. If 

w(x) > 0 and 2 exp/-Jn &I = CO, 
n=l 12-l 

54x) 4 0 for x+ co, 

4(l) < co and s lm &4 dx < 00, 
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P(X) = 1 + I, 
4(x) = 1 + ~($w, 
4-4 = W$w), 

and if for x > 0, u(x) satisfies 

4x) u’(x) + p(x) u(x) - q(x) u(x - 1) = z(x), 

lim u(x) exists. x-+m 
(2.33) 

Also 

B(x) = I u(x) - j& u(x)1 < 6, fj 1 1 - exp 
Tl=l 

[ - 1”” --$-I 
n 

1 

+ 2hfC ~14~4 / jx!+l 1 1 - exp [ - i:+' xl 11 
4) 

+ MC 2 9(j), (2.34) 
j=(r)+1 

where M = max,,G,,, 1 u(x)/, cf. (9) for the significance of the constants C and 6, . 
In our case w(x) = l/K(x, 0) > x. Therefore 

(2.35) 

If the /3 condition is satisfied we get 

K(n, 1) 
~lK(n-l,O)= O”’ 

The convergence of p’(x) to a limit is given below, if the 01 and /3 conditions are 
satisfied, 

~(-4 = I p’(x) - hip’(x) I < n;l 1 1 - “(;(; ;; l) I. (2.36) 

We, thus, have a method for determining the approximate value of 
A = ,u’(x) + O@(x)) for all the cross-sections belonging to the K(x, y) class 
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following the LY and p conditions. When p’(x) and B(x) can be calculated for a 
given x, the number of displacements may be deduced from as follows: 

1 p(x) - A(x + 1)I < 1 1 - 2A + 0 (llz B(r)dt)l < 1 e - 1 - 2A j, (2.37) 

since 

< jlm fi 1 1 - exp I- I n+l $i 1 dt = jlw rctd: 2) < \e- 2. 
n=r1 n 

(2.38) 

Sigmund’s result for the equation of the Kinchin and Pease [29,30] type is, 
thus, verified for the Snyder model (32) 

$ip.(x) = 4x + 1) + O(l). (2.39) 

So that, we may apply the De Bruijn theorem, when the (II, /3 conditions are 
approximately verified, we must have 

s ( lm &(x) + & + &) dx < co. 
9 7 

(2.40) 

b. Numerical Approximation Using the Cubic Splines Method 

The speed of convergence being known, Eq. (2.14) admits a solution which 
tends to become linear as x increases. The practical method used is, thus, justified. 
p(x) is determined by the Monte-Carlo method for a certain number of values of x, 
such that B(x) is negligible compared with the statistical fluctuations inherent in 
this method. Next, the straight line p(x) is passed through the points obtained, 
by the least-square criterion. 

The Monte-Carlo method has the advantage of giving in one calculation all the 
first cumulants of the distribution of the number of displacements. However, 
in order to give more precise results, the splines method may be used to integrate 
Eq. (2.14). The N + 1 cardinal splines may be introduced as defined by the 
boundary conditions 

Jq&J = @y(Xl) and dj?(XN4) = dI(xd, 

dg(xi> = &j (i,j = 0, l,..., N). 
(2.41) 

581/13/1-6 
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LEMMA. 

1 p(P)(x) - P’(x)[ < O(h2-y’), x>l P = 0, 1, 2, 

provided the kernel K(x, y) belong to (01, /3)’ class. 

Proof. h is the grid size, and S(x) the interpolating spline. 

/-4x) E al, a)> and K(x, y) E C (0 < y < x < co). 

In addition, 

(2.42) 

lim p”(x) -+ 0 x-3m and p(x) = S(x) as x = 1,. 

p”(x) is discontinuous as x = 2 but L2[1, co), since 

~“(4 = K(x, 0)b-Q - 1) - p’(x)1 + Q(x), 
where 

and 

Thus, 

s O” 4(x) 
1 K(x, 0) dx < M1 ’ 0 < p’(x) < 442 

K(x, 0) = inf K(x, y) < l/x. 
O<Y<X 

(2.43) 

llm /..C2(x) dx < Ilrn $ + 2 Ilrn g+(x) dx + jlm b”(x) dx < co. 

Hence, 

where Hn(a, b) = C+-l(a, b) n Lzn(a, b). In addition, p(x) satisfies Holder conti- 
nuity, which must give 

I /P’(x) - P’(x)/ < 0(h2-P), p = 0, 1, 2. 

The interpolating spline has the form 

where pj = p(xj). (2.44) 

Representative numerical results obtained for the hard spheres model will be 
found in Table I. 
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TABLE I 

p(x) exact value 
Value calculated by the 

x(/l = 0.025) splines method 

1.0953 1.1 
1.1823 1.2 
1.2624 1.3 
1.3337 1.4 
1.4055 1.5 
1.4700 1.6 
1.5306 1.7 
1.5878 1.8 
1.6419 1.9 
1.6931 2.0 
1.7443 2.1 
1.7973 2.2 
1.8516 2.3 
1.9069 2.4 
1.9629 2.5 
2.0193 2.6 

. . . . . . 

1.0948 
1.1819 
1.2620 
1.3336 
1.4052 
1.4698 
1.5304 
1.5876 
1.6417 
1.6430 
1.7441 
1.7971 
1.8515 
1.9067 
1.9627 
2.0191 

. . . 

44 x(h = 0.01) 

0.086 1.1 0.086 
0.149 1.2 0.153 
0.194 1.3 0.201 
0.223 1.4 0.234 
0.241 1.5 0.254 
0.249 1.6 0.265 

. . . . . . . . . 

3. CROSS-SECTION OF ELASTIC COLLISION 

We must choose between a sophisticated model where the finer points are met 
lost by imprecise calculations, and a cruder model where errors in calculation are 
completely overcome [4]. We have prefered the second type of model to provide 
an example which may be studied by analytical methods, the Monte-Carlo method 
and the cubic splines method, so as to have some idea of the effectiveness of this 
method for more complex cross-sections. 

For K(x, v), the exponential form studied by Lehmann [ 161 has been chosen. 
He calculates the number of displacements by the Kinchin and Pease hypotheses. 
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Sigmund used it to study channeling [28]. In fact it is the result of some sort of 
screened potential. 

m, Y) = s ; a > 0; o,<y<x<oo, 

=o elsewhere. 

This choice is justified if we take as solution of the problem of diffusion [24]. 

K(x, Y) = ,’ [ 1 + 2 f D%(X) PI, (I - $)I, 
k=l 

where z = x - y. 
Expanding e-“*a/(1 - e+) in Legendre polynomials, after a change of variables 

u=2. 
X’ 

b = 7 : H(x, u) = $ k$o B,(b) Pk(1 - u). 

This gives 

&(b) = 1, 
B,(b) = 3(coth b - l/b), 

B,(b) = 5(1 - WW), 

(3.3) 

The cross-section selected will enable a description of “d wave” collisions. The 
parameter a will be defined by D,(X) and D,(x) obtained either theoretically 
(using the collision phase-shifts) or by expanding the experimental cross-section 
into Legendre polynomials. 

The odd coefficients of such an expansion tend to become zero where the 
primary’s energy has a small value [24]. This truncated exponential distribution 
comprises the idealized model of hard spheres collision. If 

a+0 K(x, Y> = l/x Y E (0, XL (3.4) 

then, of course, a + co, K(x, y) = 6(x - y). 
Zero energy is transferred by elastic shock. Hence, we consider a as a constant, 

even though this is a restrictive condition. The conditions of the preceding 
paragraph are fullIlled by K, which is L2 integrable with the norm 
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After differentiating (2.14) with respect to X, we get 

yp”(x) + p’(x) = p’(x - 1) for x > 2, 

eax - 1 
limp’(x) exists if w(x) = a, x-rm 

(3.5) 

where 

In particular 

(s+1) e” _ 1 
w, 4 G 17 -1’ n=l 

which gives 

P(X) = 40)(x - 1) + p(1) + 0 [J-1= p(f; 2)]. 

(3.7) 

(3.8) 

When the function v(t, n) is introduced [6] we get 

where 
1 p(x) - e-Y(x + l)/ < I e - 1 - 2e+ 1 < 1, 

44 4 =J,” rcn’yxd; 1)) 

since A(0) = e-y, where y = 0.577215 is the Euler’s constant. 
This was already a classical result in the analytical theory of prime numbers [lo] 

before being used in the statistical theory of damage. p(x) for x < 4 may be 
explicitly calculated [5], ~(4) = 2.8072708 and m = e-7(1 + X) = 2.8072974 
for x = 4, from which 

This justifies the use of the asymptotic formula given by Seitz [27] even where x 
is of small value. Indeed, most of the asymptotic formula of the theory of damage 
have been given without defining the area in which they are acceptable; certain 
cross-sections offer asymptotic results which are not valid for primaries of very 
low energy. Only Frey [12] uses De Bruijn results [9] in the case of hard spheres 
shocks, but unfortunately his results do not agree with the Pal and Nemeth results, 
since the equations used do not represent moments of the order > 2 for the 
distribution of damage. 

When Q is very large B(x, a) 5 e-az(0+1)/2 (3.9) 

I-c(x) = P(l) + 44(x - 1) + 0 (J1’ e--cls(d+l)la ds). (3.10) 
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The equation may be written under the form 

’ - ‘-‘a p’(X) = e-“*p(x - 1) + c+ S_:-’ ae-“Wp(u) & a for x 

Integrating by parts, then making x --f cc 

A(a) = p’(x) = ae-” (1 + jlm @V(y) 4). 

But p’(x) is bounded on [I, co), thus, 

> 1. (3.11) 

(3.12) 

A(a) = se-Q + O(ae-2a), a-+ co, from which a + co (3.13) 

PC4 - pi&i (x+l)I$/l--&$$-J<l. (3.14) 

This result may be usefully compared to that obtained by Lehmann [16] with the 
Kinchin and Pease hypotheses 

(3.15) 

Thus, where a is large, the mean of the two models converge. This fact is shown 
by comparing the two results in Fig. 1. In the same figure the results obtained by 

FIG. 1. A(@) displacements factor. (*) Monte-Carlo results. (.) Approximate results. (d) 
L.ehmaun results. (I) Error bars corresponding to B(x, a) (for x = 3). 
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the Monte-Carlo method are shown to closely agree with analytical results which 
have been obtained in the following way: 

p(x) = 1 + e+Ln ( ear - ’ 1 ea-1 ’ 1 <x<2, (3.16) 

p(~) = 1 + e-aLn ( :rI 1’ ) + e-2a 1; (Lna ( zasT 1’ ) - Ln2 ( z - : )) 

+ (L” (-g&) - L, (E)) + ; (Ln2 ($2) - Ln2 (F)) 

+ (L2 (- e2a1-1)-L2(- eazlJ1’ 2GxG3* 

L,(x) is the dilogarithm function [18] calculated using Kblbig’s algorithm [15]. 
If A(u) represents lim,,, p’(x), the exact value p’(x), for a given x, gives estimate 

with an error less than B(x, a). Figure 1 represents the graph of A(a) obtained in 
this way, the errors bars correspond to B(x, a). The calculation was made using 
p’(3) & B(3, a); we may observe that A(u) decreases monotonically from e-y to 
zero as x -+ 03 and 

1 p(x) - A@)(1 + x)l d I 1 - 2A(4 + O(l)1 < 1. (3.17) 

4. STUDY OF THE WMULANTS OF THE DISTRIBUTION 
OF THE NUMBER OF DISPLACEMENTS 

The equation governing the moment of order 2 is written with the help of 

tL2w = [ 
a2g(x, t) 1 at2 3 t=o 

P2W = ~o~K(x,y)~2(y)+I*2(x--- 1)1dy+2~ozK(x,Y)~(y)p(x- 

P2W = a2(4 + P2W, 

where u”(x) is the variance. The integral equation may be written as 

““(-4 - JOE @, U>(U2(Y) + u2(x - Y - 1)) & 

Y - l)& 
(4.1) 

(4.2) 



86 CHAMAYOU 

For the K(x, y) class to be introduced, the following asymptotic result is obtained 
using the De Bruijn theorem after having differentiated the preceding equation 
twice for x > 2. 

p% u”(x) = A&)(1 + x) + O(1). (4.3) 

Figure 2 shows the variation of A&)/A( a as a function of a (for x = 3), as ) 

FIG. 2. O*/P (a) ks/p (a). (*, V) Monte-Carlo results. (-) Approximate results calculated 
for x = 3. (4) Lehmann results. 

well as Lehman& results with the Kinchin and Pease’s hypotheses. It will be seen 
that for a -+ co, the variances of the two models become the same. Besides we have 

u”(x) cz 12/t(u) - 1 I p(x) for x--t co 

a+co (4.4) 

as is verified by the approximated calculation. We may, thus, state that for 
a + co: A(a) -+ 0 and a2(x) -+ p(x). The Monte-Carlo method provides values for 
the variance (Fig. 2) in accordance with the analytical results. 
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The equation governing the moment of order 3 

P&4 = joE m JNcLdY) + PdX - Y - 1)) 

+ 3&(Y) p2(x - Y - 1) + Ax - Y - 1) - P2(YN du = 09 (4.5) 

Ux) = l-49 - 30%) A4 - P3W 

The results obtained for cumulants of order less than 3 are extended to the 
cumulant of order 3 in the example chosen 

F-2 &(x) = A,(4(1 + x> + O(1). (4.4) 

Figure 2 shows the variation of A,(a)/A(u), as a function of a 

K,(x) = &W(u) - 6&z) + 1) p(x) for x -+ cc 
U-+Xl (4.7) 

as justified by the approximate calculation. 
Thus, for a -+ co, A(u) + 0 and &(x) + p(x), the Monte-Carlo method provides 

the correct values of the cumulant showing asymmetry only when this cumulant 
is not too weak and not masked by the asymmetry inherent in the distribution of 
the pseudo-random numbers. Notice that the statistical fluctuations of the dis- 
placement factor A(u) are particularly felt as a is large. What is more, we have 
shown the result to be 

u2(x) + P(X)9 f&(x) -+ p(x) as a+ co. (4.8) 

The property K, = K,-l, II = 2,... typifies Poisson’s law, i.e., a highly dispersive 
law or a “small numbers law.” Thus, for a + co, we will get 

p,(x) = (ue-?x + 1))” 
m! exp{-ue-“(x + 1)). 

Leibfreid’s conjecture is, thus, verified [17]. For a + 0, p,(x) has a strongly 
Gaussian appearance. Between these extreme zones, p,(x) could be represented by 
an Airy function to take the asymmetry into account, or by an Edgeworth expansion 
in terms of the first cumulants to take the skewness into account. 

CONCLUSION 

Figure 3 gives the number of displacements as a function of energy in the hard 
sphere example and for different values of a. These results were calculated by the 
cubic splines method. The comparison with the explicit solution enables us to 
judge the precision of this method (Table I). 



FIG. 3. Number of displacements p(x) = L&)X + ct (by splines method). 

0.: 

0.1 

0 
z 

7 

- 0.05 

FIG. 4. O”(X) variance and k&c). 



FIG. 5. Variance and k3 a = 0. 

2.5 

\ 

FIG. 6. Number of displacements by splines method for truncated Coulomb cross section 
fqx, x - z) = @a - 1)/x@ - 1 + 24X)“. 
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2 

15 

1 

FIG. 7. Number of displacements by splines method for Firsov potential K(x, x - z) = 
((1 - s)/x)(x/z)“; 0 Q s < 1. 

.d- 

1 )I 

.3 - 

.2 - 

.1 - 

0 

FIG. 8. Elastic collisions cross sections. (-) Hard spheres. (A) Truncated exponential, 
a = 0.372507 (x = 10). (0) Legendre polynomials expansion (order 2). 
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In Fig. 4 and 5 we observe the variance of the number of displacements and the 
cumulant of order 3. These two cumulants enable us to observe the asymptotic 
properties for the solutions of the equations studied and their stability. 

Lehmann’s exponential cross-section [16] permits us to vary considerably the 
number of displacements, taking into account the anisotropy introduced by the 
first coefficients of the expansion in Legendre polynomials of the cross-section. 
The results obtained for A(a) are likely to provide theoretical results comparable 
to the experimental results [25]. Further, the distribution of the number of 
displacements is highly Gaussian for a primary of low energy, whereas it is 
Poissonian for a primary of high energy whose loss of energy due to the binding 
energy is not very important. 

Figures 6 and 7 give the number of displacements as a function of energy for the 
truncated Coulomb cross-section and for the Firsov potential for different values 
of the parameters /3 and s. 

m, x - 2) $ LP, A) if s > 4, 

so that the splines method is poorly accurate. 
Figure 8 gives the truncated exponential cross-section and its Legendre poly- 

nomials expansion (order 2); Table II gives the corresponding values of p(x). 

TABLE II 

P(x) 
truncated exponential 

(exact) 

P(X) 
Legendre polynomials 

expansion (order 2) 
x (by splines method) 

1 
1.0793 
1.1530 
1.2220 
1.2870 
1.3485 
1.4070 
1.4629 
1.5165 
1.5681 
1.6178 
1.6705 
1.7219 
1.7732 
1.8247 
1.8763 
1.9282 

a = 0.372507. 

1.0 1 
1.1 1.0802 
1.2 1.1539 
1.3 1.2229 
1.4 1.2878 
1.5 1.3493 
1.6 1.4078 
1.7 1.4636 
1.8 1.5172 
1.9 1.5687 
2.0 1.6184 
2.1 1.6680 
2.2 1.7182 
2.3 1.7691 
2.4 1.8204 
2.5 1.8720 
2.6 1.9238 
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